skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhou, Dongyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Quantifying how grain size and/or deviatoric stress impact (Mg,Fe)2SiO4phase stability is critical for advancing our understanding of subduction processes and deep-focus earthquakes. Here, we demonstrate that well-resolved X-ray diffraction patterns can be obtained on nano-grained thin films within laser-heated diamond anvil cells (DACs) at hydrostatic pressures up to 24 GPa and temperatures up to 2300 K. Combined with well-established literature processes for tuning thin film grain size, biaxial stress, and substrate identity, these results suggest that DAC-loaded thin films can be useful for determining how grain size, deviatoric stress, and/or the coexistence of other phases influence high-pressure phase stability. As such, this novel DAC-loaded thin film approach may find use in a variety of earth science, planetary science, solid-state physics, and materials science applications. 
    more » « less
  2. We report experimental constraints on the melting curve of potassium chloride (KCl) between 3.2 and 9 GPa from in situ ionic conduction measurements using a multi-anvil apparatus. On the basis of concurrent measurements of KCl and sodium chloride (NaCl) at 1 bar using the differential thermal analysis (DTA) method and Pt sphere marker, we show that the peak rate of increase in ionic current with temperature upon heating coincides with latent heat ledge and fall of Pt sphere, thus establishing the criterion for melting detection from ionic conduction measurements. Applying this criterion to high pressures, we found that the melting point of KCl rose steeply with increasing pressure to exceed 2443 ± 100 K at 9 GPa. Fitting the results of this study together with existing data at pressures below 4 GPa and above 20 GPa, we obtained the Simon’s melting equation for KCl in the simple cubic B2 structure between 1.8 and 50 GPa: T m = 1323 ( P − 1.87 2.2 ( 1 ) + 1 ) 1 2.7 ( 1 ) , where T is in K and P is in GPa. Starting at 1 bar, the melting point of KCl increases at an average rate of ~150 K/GPa to cross that of Pt near 9 GPa. The highly refractory nature of KCl makes it a sensitive pressure calibrant for the large-volume pressure at moderate pressures and a potential sample container for experiments at moderate pressures and very high temperatures. 
    more » « less